ЦЕНТР ОПИСАННОЙ ОКОЛО ТРЕУГОЛЬНИКА ОКРУЖНОСТИ ЛЕЖИТ НА МЕДИАНЕ .ДОКАЖИТЕ ЧТО ЭТОТ ТРЕУГОЛЬНИК ЛИБО РАВНОБЕДРЕННЫЙ ЛИБО

ЦЕНТР ОПИСАННОЙ ОКОЛО ТРЕУГОЛЬНИКА ОКРУЖНОСТИ ЛЕЖИТ НА МЕДИАНЕ .ДОКАЖИТЕ ЧТО ЭТОТ ТРЕУГОЛЬНИК ЛИБО РАВНОБЕДРЕННЫЙ ЛИБО

Один комментарий к ЦЕНТР ОПИСАННОЙ ОКОЛО ТРЕУГОЛЬНИКА ОКРУЖНОСТИ ЛЕЖИТ НА МЕДИАНЕ .ДОКАЖИТЕ ЧТО ЭТОТ ТРЕУГОЛЬНИК ЛИБО РАВНОБЕДРЕННЫЙ ЛИБО

  1. Центр описанной окружности лежит на пересечении серединных перпендикуляров.
    Для равнобедренного треугольника серединная высота, проведенная от основания=медиане=биссектрисе.
    в прямоугольном треугольнике медиана проведенная из вершины прямого угла к гипотенузе = 1/2 гипотенузы, а гипотенуза = диаметру описанной окружности, т.к. угол опирающийся на гипотенузу =90 и есть вписанным углом, те.угол диаметра= 2*90=180 — прямая линия, это 1/2 окружности. а медиана = радиусу
    Постоянная ссылка

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Можно использовать следующие HTML-теги и атрибуты:
<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>